0%

最速降线曲线

最速降线(Brachistochrone)

最速降线是指在重力作用下,从点 A 到点 B 物体运动时间最短的曲线。

运动时间公式:

T=xAxB1+[y(x)]22g(yAy(x))dxT = \int_{x_A}^{x_B} \frac{\sqrt{1 + [y'(x)]^2}}{\sqrt{2g(y_A - y(x))}} \, dx


泛函与欧拉-拉格朗日方程

泛函定义:

I[y]=x1x2f(x,y,y)dxI[y] = \int_{x_1}^{x_2} f(x, y, y') \, dx

对泛函进行微扰:

Y=y+ϵδ(x),δ(x1)=δ(x2)=0Y = y + \epsilon \delta(x), \quad \delta(x_1) = \delta(x_2) = 0

I[y+ϵδ(x)]=x1x2f(x,Y,Y)dxI[y + \epsilon \delta(x)] = \int_{x_1}^{x_2} f(x, Y, Y') \, dx

取极值的必要条件:

ddϵI[y+ϵδ(x)]ϵ=0=0\left. \frac{d}{d\epsilon} I[y+\epsilon \delta(x)] \right|_{\epsilon=0} = 0

dF(ϵ)dϵ=x1x2[fYddx(fY)]δ(x)dx=0\frac{dF(\epsilon)}{d\epsilon} = \int_{x_1}^{x_2} \left[ \frac{\partial f}{\partial Y} - \frac{d}{dx} \left( \frac{\partial f}{\partial Y'} \right) \right] \delta(x) \, dx = 0

对任意 δ(x)\delta(x),得到欧拉-拉格朗日方程:

fyddx(fy)=0\frac{\partial f}{\partial y} - \frac{d}{dx} \left( \frac{\partial f}{\partial y'} \right) = 0


贝尔特拉米积分(Beltrami Identity)

如果 F(y,y)F(y, y') 不显含 xx,满足欧拉-拉格朗日方程:

ddx(Fy)=Fy\frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) = \frac{\partial F}{\partial y}

定义:

E=FyFyE = F - y' \frac{\partial F}{\partial y'}

得:

FyFy=CF - y' \frac{\partial F}{\partial y'} = C


最速降线求解

泛函:

L(y,y)=1+y22g(yAy)L(y, y') = \frac{\sqrt{1 + y'^2}}{\sqrt{2g(y_A - y)}}

由于不显含 xx,使用贝尔特拉米积分:

Ly=y2g(yAy)1+y2\frac{\partial L}{\partial y'} = \frac{y'}{\sqrt{2g(y_A - y)} \sqrt{1 + y'^2}}

解得:

1+y2=12gC2(yAy)1 + y'^2 = \frac{1}{2gC^2 (y_A - y)}

y=yAuy = y_A - u

u12gC2udu=dx\sqrt{\frac{u}{\frac{1}{2gC^2} - u}} \, du = dx

v=2gC2uv = 2gC^2 u

dx=12gC2v1vdvdx = \frac{1}{2gC^2} \sqrt{\frac{v}{1 - v}} \, dv

v=sin2θv = \sin^2 \theta 并积分:

x=12gC22sin2θdθ=12gC2(θsin2θ2)+Dx = \frac{1}{2gC^2} \int 2 \sin^2 \theta \, d\theta = \frac{1}{2gC^2} \left( \theta - \frac{\sin 2\theta}{2} \right) + D

y=yAsin2θ2gC2y = y_A - \frac{\sin^2 \theta}{2gC^2}

最终可写成摆线方程:

x=a(θsinθ)+xAx = a (\theta - \sin \theta) + x_A

y=a(1cosθ)+yAy = -a (1 - \cos \theta) + y_A

a=14gC2a = \frac{1}{4 g C^2}

其中 aa 为滚动圆半径^a


参考